бесконечно - definição. O que é бесконечно. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é бесконечно - definição

Гладкий анализ бесконечно малых

бесконечно      
нареч.
1) Не имея конца, предела (в пространстве и времени).
2) перен. Очень, чрезвычайно.
Бесконечно делимое распределение         
Бесконе́чно дели́мое распределе́ние в теории вероятностей — распределение случайной величины такой, что она может быть представлена в виде произвольного количества независимых, одинаково распределённых слагаемых.
Физически бесконечно малый объём         
Физически бесконечно малый объём (или представительный объём) — минимальный объём материала, в котором содержится достаточное для статистического описания состояния тела число «носителей» рассматриваемых механизмов процесса. Добавление к этому объёму других частей данного материала с аналогичной (в статистическом смысле) конфигурацией «носителей» анализируемых механизмов не должно приводить к изменению эволюционных уравнений для полевых величин, описывающих изменение конфигурации «носителей».

Wikipédia

Гладкий инфинитезимальный анализ

Гладкий инфинитезимальный анализ — это математически строгое переформулирование анализа в терминах инфинитезималей. Будучи основанным на идеях Уильяма Ловера и используя методы теории категорий, он рассматривает все функции как непрерывные и невыражаемые через дискретные элементы. Как теория это раздел синтетической дифференциальной геометрии.

Нильпотентными инфинитезималями называют числа ε {\displaystyle \varepsilon } , удовлетворяющие условию ε 2 = 0 {\displaystyle \varepsilon ^{2}=0} ; при этом совсем не обязательно ε = 0. {\displaystyle \varepsilon =0.}

Этот подход отходит от классической логики, используемой в обычной математике, отказываясь от закона исключённого третьего, утверждающего, что из ¬ ( a b ) {\displaystyle \neg (a\neq b)} следует a = b . {\displaystyle a=b.} В частности, для некоторых инфинитезималей ε {\displaystyle \varepsilon } нельзя доказать ни ε = 0 {\displaystyle \varepsilon =0} , ни ¬ ( ε = 0 ) {\displaystyle \neg (\varepsilon =0)} . То, что закон исключённого третьего не может выполняться, видно из следующей основной теоремы:

В гладком инфинитезимальном анализе любая функция, домен которой — R {\displaystyle \mathbb {R} } (вещественные числа, дополненные инфинитезималями), непрерывна и бесконечно дифференцируема.

Несмотря на это, можно попробовать определить разрывную функцию, например, как

f ( x ) = { 1 , x = 0 , 0 , x 0. {\displaystyle f(x)={\begin{cases}1,&x=0,\\0,&x\neq 0.\end{cases}}}

Если бы закон исключённого третьего выполнялся, это было бы полностью определённой, разрывной функцией. Однако существует множество значений x {\displaystyle x} — инфинитезималей, — для которых не выполняется ни x = 0 {\displaystyle x=0} , ни x 0 {\displaystyle x\neq 0} , так что эта функция определена не на всём R {\displaystyle \mathbb {R} } .

В типичных моделях гладкого инфинитезимального анализа инфинитезимали не являются обратимыми, и следовательно, эти модели не содержат бесконечных чисел. Однако также существуют модели с обратимыми инфинитезималями.

Существуют также другие системы, включающие инфинитезимали, например нестандартный анализ и сюрреальные числа. Гладкий инфинитезимальный анализ похож на нестандартный анализ в том, что он разработан как основание анализа, и инфинитезимали не имеют конкретных величин (в противоположность сюрреальным числам, в которых типичный пример инфинитезималя — 1 / ω {\displaystyle 1/\omega } , где ω {\displaystyle \omega } — ординал фон Неймана). Однако гладкий инфинитезимальный анализ отличен от нестандартного анализа в том, что он использует неклассическую логику, и в том, что для него нарушается принцип переноса. Некоторые теоремы стандартного и нестандартного анализа ложны в гладком инфинитезимальном анализе, примерами служат теорема Больцано — Коши и парадокс Банаха — Тарского (последний доказуем в классической математике в рамках ZFC, но недоказуем в ZF). Утверждения на языке нестандартного анализа могут быть переведены в утверждения о пределах, но то же самое не всегда верно в гладком инфинитезимальном анализе.

Интуитивно гладкий инфинитезимальный анализ можно интерпретировать как описывающий мир, в котором линии состоят из бесконечно малых отрезков, а не из точек. Эти отрезки можно считать достаточно длинными, чтобы иметь определённое направление, но недостаточно длинными, чтобы искривляться. Конструирование разрывных функций не удаётся потому, что функция отождествляется с кривой, а кривую нельзя сконструировать поточечно. Можно представить, что теорема Больцано — Коши не выполняется из-за способности инфинитезимального отрезка «перекидываться» через разрыв. Аналогично, парадокс Банаха — Тарского не выполняется потому, что область нельзя разделить на точки.

Exemplos do corpo de texto para бесконечно
1. Размышления о бесконечно малом и бесконечно большом.
2. Герои, картинно прицеливаясь, бесконечно стреляют.
3. - Все подобные параллели бесконечно поверхностны.
4. "Я бесконечно тронут этой высокой наградой и хочу сказать, что я безмерно, бесконечно люблю Францию.
5. НАТО призвало Москву ускорить бесконечно обещаемый и бесконечно откладываемый уход из Грузии.
O que é бесконечно - definição, significado, conceito